Activity title

Treasure Hunt

Time required

1 hour
Activity summary
Locating pirate treasure on a map using coordinates, vectors and angles
By the end of this activity, you will be able to:
Find directions on a map using coordinates, vectors and polar coordinates
What equipment will you need?

- Ruler
- Pencil
- Eraser
- Protractor (360 degree)

How to do it

1. Example of finding a position using coordinates:

To find a position, always read the x-axis before the y-axis.
The x and y position is then written in brackets with a comma.

$$
\begin{aligned}
\text { s } & =(1,3) \\
\text { 总 } & =(3,5) \\
& =(5,1)
\end{aligned}
$$

Activity title: Treasure Hunt

For more information about this, you could look at

BBC Bitesize -

What are Coordinates:
BBC Bitesize -
How to plot coordinates:
https://www.bbc.co.uk/bitesize/topics/zgthvcw/articles/z96k9qt
https://www.bbc.co.uk/bitesize/topics/zdbc87h/articles/zvvmtv4
2. Example of finding a position using vector coordinates.

Starting from $(0,0)$:

1. Move $(3,0)$
2. Move $(0,2)$
3. Move (-2,0)
4. Move $(0,2)$

5. Example of finding a position using polar coordinates:

Using Angle and Distance:

1. Move 45 degrees, 40 mm
2. Move 315 degrees, 25 mm
3. Move 90 degrees, 20 mm

Activity title: Treasure Hunt

Now try this

Have a go at this one using coordinates:

1. Start your treasure hunt at position $(0,0)$
2. Walk to position $(16,12)$. What place have you arrived at?
3. Walk to position $(9,15)$. What place have you arrived at?
4. Walk to position $(10,21)$. What place have you arrived at?
5. Walk to position $(4,21)$. Now dig up the treasure! Where is it hidden?

Activity title: Treasure Hunt

Have a go at this one using vector coordinates:

1. Start your treasure hunt at position $(0,0)$.
2. Move $(7,7)$. What feature have you arrived at?
3. Move $(7,4)$. What feature have you arrived at?
4. Move $(-3,4)$. What place have you arrived at?
5. Move $(-6,-2) \quad$ Now dig up the treasure! Where is it hidden?

Activity title: Treasure Hunt

Now have a go at this one using polar coordinates:

1. Start your treasure hunt at position $(0,0)$
2. Walk on a bearing and distance of 75 degrees and 115 mm .

What feature have you arrived at?
3. Walk on a bearing and distance of 330 degrees and 120 mm .

What feature have you arrived at?
4. Walk on a bearing and distance of 50 degrees and 60 mm .

What place have you arrived at?
5. Walk on a bearing and distance of 0 degrees and 30 mm .

Now dig up the treasure! Where is it hidden?

$m y \circ \rho$

Activity title: Treasure Hunt

- You could also

- Starting from datum $(0,0)$ give directions to other features on the treasure map
- If map grids are of a scale $10 \mathrm{~mm}=0.5 \mathrm{~km}$, work out the distance travelled to find the treasure

Further activities you could carry out

Have a go at drawing your own treasure map and giving directions to the treasure.

Activity title: Treasure Hunt

What results were expected?

Using coordinates:

Using vector coordinates:

Using polar coordinates:

